Project Title	Funding	Strategic Plan Objective	Institution
Using technology to expand and enhance applied behavioral analysis programs for children with autism in military families	\$1,484,979	Q5.L.A	University of Nebraska Medical Center
A randomized clinical trial of cognitive enhancement therapy for adults with autism spectrum disorders	\$1,412,388	Q4.S.F	University of Pittsburgh
Family studies of sensorimotor and neurocognitive heterogeneity in autism spectrum disorders (ASD)	\$588,544	Q1.L.B	University of Texas Southwestern Medical Center at Dallas
Neural basis of empathy and its dysfunction in autism spectrum disorders (ASD)	\$572,893	Q2.Other	Duke University
Novel probiotic therapies for autism	\$570,145	Q4.S.B	California Institute of Technology
Excessive cap-dependent translation as a molecular mechanism underlying ASD	\$549,386	Q2.Other	New York University
Neural correlates of restricted, repetitive behaviors in autism spectrum disorders	\$491,909	Q2.S.G	Massachusetts General Hospital
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$346,289	Q4.S.B	University of North Carolina at Chapel Hill
Developing novel automated apparatus for studying battery of social behaviors in mutant mouse models for autism	\$217,948	Q2.Other	Weizmann Institute of Science
Neural correlates of restricted, repetitive behaviors in autism spectrum disorders	\$171,842	Q2.S.G	Massachusetts General Hospital
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$167,572	Q4.S.B	University of North Carolina at Chapel Hill
Modulation of fxr1 splicing as a treatment strategy for autism in fragile X syndrome	\$158,649	Q2.S.D	Stanford University
Serotonin signal transduction in two groups of autistic patients	\$157,000	Q2.Other	University of Illinois at Chicago
Evaluating and enhancing driving skills of individuals with Asperger's and high-functioning autism	\$153,190	Q6.L.A	University of Virginia
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$39,325	Q4.S.B	University of North Carolina at Chapel Hill
Abnormal vestibulo-ocular reflexes in autism: A potential endophenotype	\$0	Q1.L.A	University of Florida
dentification of lipid biomarkers for autism	\$0	Q1.L.A	Massachusetts General Hospital
Biomarkers for autism and for gastrointestinal and sleep problems in autism	\$0	Q1.L.A	Yale University
Multiplexed suspension arrays to investigate newborn and childhood blood samples for potential immune biomarkers of autism	\$0	Q1.L.A	Centers for Disease Control and Prevention (CDC)
Placental vascular tree as biomarker of autism/ASD risk	\$0	Q1.L.A	Research Foundation for Mental Hygiene, Inc.
A prospective multi-system evaluation of infants at risk or autism	\$0	Q1.L.B	Massachusetts General Hospital
A prospective multi-system evaluation of infants at risk for autism	\$0	Q1.L.B	Massachusetts General Hospital

Project Title	Funding	Strategic Plan Objective	Institution	
Receptive vocabulary knowledge in low-functioning autism as assessed by eye movements, pupillary dilation, and event-related potentials	\$0	Q1.L.C Johns Hopkins University		
Atypical pupillary light reflex in individuals with autism	\$0	Q1.Other	University of Missouri	
Characterization of the pathological and biochemical markers that correlate to the clinical features of autism	\$0	Q2.Other	Research Foundation for Mental Hygiene, Inc.	
Characterization of the pathological and biochemical markers that correlate to the clinical features of autism	\$0	Q2.Other	Research Foundation for Mental Hygiene, Inc.	
Role of autism-susceptibility gene, CNTNAP2, in neural circuitry for vocal communication	\$0	Q2.Other	University of California, Los Angeles	
Characterization of the pathological and biochemical markers that correlate to the clinical features of autism	\$0	Q2.Other	Research Foundation for Mental Hygiene, Inc.	
Self-injurious behavior: An animal model of an autism endophenotype	\$0	Q2.Other	University of Florida	
Mechanisms of mitochondrial dysfunction in autism	\$0	Q2.S.A	Georgia State University	
Redox abnormalities as a vulnerability phenotype for autism and related alterations in CNS development	\$0	Q2.S.A	Arkansas Children's Hospital Research Institute	
Redox abnormalities as a vulnerability phenotype for autism and related alterations in CNS development	\$0	Q2.S.A	University of Rochester	
Systematic characterization of the immune response to gluten and casein in autism spectrum disorders	\$0	Q2.S.A	Weill Cornell Medical College	
Redox abnormalities as a vulnerability phenotype for autism and related alterations in CNS development	\$0	Q2.S.A	State University of New York at Potsdam	
The functional link between DISC1 and neuroligins: Two genetic factors in the etiology of autism	\$0	Q2.S.D	Children's Memorial Hospital, Chicago	
Gastrointestinal functions in autism	\$0	Q2.S.E	University at Buffalo, The State University of New York	
Etiology of sleep disorders in ASD: Role of inflammatory cytokines	\$0	Q2.S.E	University of Maryland, Baltimore	
The transcription factor PLZF: A possible genetic link between immune dysfunction and autism	\$0	Q3.L.B	Memorial Sloan-Kettering Cancer Center	
Maternal risk factors for autism spectrum disorders in children of the Nurses' Health Study II	\$0	Q3.L.C	Harvard University	
Maternal risk factors for autism spectrum disorders in children of the Nurses' Health Study II	\$0	Q3.L.C	Massachusetts General Hospital	
Maternal risk factors for autism spectrum disorders in children of the Nurses' Health Study II	\$0	Q3.L.C	Harvard University	
MeHG stimulates antiapoptotic signaling in stem cells	\$0	Q3.S.F	Kennedy Krieger Institute	
Immunopathogenesis in autism: Regulatory T cells and autoimmunity in neurodevelopment	\$0	Q3.S.F	East Carolina University	
Analysis of the small intestinal microbiome of children with autism	\$0	Q3.S.I	Massachusetts General Hospital	

Project Title	Funding	Strategic Plan Objective	Institution
Toxicant-induced autism and mitochondrial modulation of nuclear gene expression	\$0	Q3.S.J	Texas A&M University
Discordant monozygotic twins as a model for genetic- environmental interaction in autism	\$0	Q3.S.J	Johns Hopkins University
Epigenetic regulation of the autism susceptibility gene, ENGRAILED 2 (EN2)	\$0	Q3.S.J	University of Medicine & Dentistry of New Jersey - Robert Wood Johnson Medical School
Discordant monozygotic twins as a model for genetic- environmental interaction in autism	\$0	Q3.S.J	Kennedy Krieger Institute
Developing treatment, treatment validation, and treatment scope in the setting of an autism clinical trial	\$0	Q4.L.A	University of Medicine & Dentistry of New Jersey - Robert Wood Johnson Medical School
Developing treatment, treatment validation, and treatment scope in the setting of an autism clinical trial	\$0	Q4.L.A	University of Medicine & Dentistry of New Jersey
Developing treatment, treatment validation, and treatment scope in the setting of an autism clinical trial	\$0	Q4.L.A	University of Medicine & Dentistry of New Jersey - Robert Wood Johnson Medical School
Novel strategies to manipulate Ube3a expression for the treatment of autism and Angelman syndrome	\$0	Q4.S.B	University of North Carolina at Chapel Hill
Interaction between MEF2 and MECP2 in the pathogenesis of autism spectrum disorders -2	\$0	Q4.S.B	Burnham Institute
Interaction between MEF2 and MECP2 in the pathogenesis of autism spectrum disorders - 1	\$0	Q4.S.B	Burnham Institute
Development of a high-content neuronal assay to screen therapeutics for the treatment of cognitive dysfunction in autism spectrum disorders	\$0	Q4.S.B	Massachusetts Institute of Technology
Intranasal oxytocin for the treatment of children and adolescents with autism spectrum disorders (ASD)	\$0	Q4.S.C	Holland Bloorview Kids Rehabilitation Hospital
Improving synchronization and functional connectivity in autism spectrum disorders through plasticity-induced rehabilitation training	\$0	Q4.S.F	University of California, San Diego
Development of an internet-based parent training intervention for children with ASD	\$0	Q5.L.A	Michigan State University